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Abstract

Computed tomography (CT) is a widely used non-destructive imaging technique for medical
diagnosis, interventional procedures, and treatment planning. CT reconstruction involves accurately
recovering linear attenuation coefficients in the form of image pixels from experimentally measured
CT data in the form of line integrals. Provided that the acquired data satisfy the data sufficiency
condition and other conditions regarding the view angle sampling interval and the severity of
transverse data truncation, researchers have devised many solutions, including deterministic
and statistical iterative approaches to reconstruct the CT image accurately. However, if these
conditions are violated, accurate and robust image reconstruction from ill-posed CT data remains
an intellectual challenge. Deep learning methods offer powerful regression capabilities to perform
imaging processing tasks such as noise mitigation and artifact reduction. However, these methods
face fundamental issues in medical imaging applications, such as accuracy and performance
degradation when applied to individual patients or different patient cohorts. When the problem
becomes overly ill-posed due to aggressive view angle undersampling and data truncation, the
image artifacts in the conventional reconstructed images become so severe that crucial patient
information is obscured from the deep neural network. Consequently, the deep learning methods
may miss or ‘daydream” information, potentially leading to disastrous outcomes.

This thesis project proposed several novel CT image reconstruction frameworks that synergis-
tically combine analytical, iterative, and deep learning approaches to tackle three long-standing
difficult CT reconstruction problems. The first study proposed a quality-assured deep learning
reconstruction framework called “DL-PICCS", which combined a deep learning strategy with prior
image constrained compressed sensing to tackle sparse-view reconstruction problems. The images
post-processed by a deep neural network were used as the prior compressed sensing image. In
contrast, the measured sinogram data were used to correct falsely reconstructed image details
and avoid over-smoothness. The same method was also leveraged to defend against adversarial
perturbations intentionally crafted and added to the network input to make the deep neural network
unstable. The second study proposed a new reconstruction framework called “Deep-Interior" that
leveraged weighted backprojection and a deep neural network to address severe data truncation for
both short-scan and super-short-scan data acquisition schemes. The weighted backprojection was
derived as a nice feature space, a blurred version of the original CT image with a shift-invariant

blurring kernel. The deep learning model learns a generalizable deconvolution scheme that can
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be applied to arbitrary regions within the patient’s body. The third study leveraged the power of
analytical reconstruction and statistical analysis to estimate patient-specific and local noise power
spectra from single CT data acquisitions. The statistical properties of the new estimator were
rigorously derived to demonstrate its superiority over the conventional method using repeated
samples. Completing this thesis project offers promising software advancements that can accelerate
the arrival of next-generation novel CT imaging techniques with significantly reduced radiation
dose, lower equipment costs, and improved patient care quality.



